Structure prediction and targeted synthesis: a new Na(n)N2 diazenide crystalline structure.

نویسندگان

  • Xiuwen Zhang
  • Alex Zunger
  • Giancarlo Trimarchi
چکیده

Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound Na(n)N(2), manifesting homopolar N-N bonds. The previously predicted Na(3)N structure manifests only heteropolar Na-N bonds and has positive formation enthalpy. It was calculated based on local Hartree-Fock relaxation of a fixed-structure type (Li(3)P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive ΔH compound using activated nitrogen yielded another structure (anti-ReO(3)-type). The currently predicted (negative formation enthalpy) diazenide Na(2)N(2) completes the series of previously known BaN(2) and SrN(2) diazenides where the metal sublattice transfers charge into the empty N(2) Π(g) orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na(2)N(2) predicted here will be interesting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Seeding Time Effect on the Inter-Crystalline Structure of Hydroxy-Sodalite Zeolite Membranes by Single Gas (H2 and N2) Permeation

Microporous hydroxy-sodalite zeolite membranes with different morphologies were synthesized via secondary growth technique with vacuum seeding on tubular α-Al2O3 supports at two different synthesis conditions (i.e. two different routes). Microstructures of the synthesized membranes were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM) and si...

متن کامل

Synthesis of alkaline earth diazenides M(AE)N2 (M(AE) = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure.

The alkaline earth diazenides M(AE)N(2) with M(AE) = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at high-pressure/high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Å, c = 5.9844(9) Å, Z = 2, wR(p) = 0.078) was ...

متن کامل

Synthesis and crystal structure of a new thiosemicarbzone, acenaphthenequinone thiosemicarbazone mono methanol

A new thiosemicarbzone compound was prepared by the reaction of acenaphthenequinone and thiosemicarbazide (1:1 molar ratio) in absolute methanol at 70°C. The crystal structure of this compound, acenaphthenequinone thiosemicarbazone mono methanol, was determined by X-ray crystallography. The unit cell parameters are as follows: a = 7.0384(14) Ǻ, b = 14.202(3) Ǻ, c = 14.270(3) Ǻ, β = 104.26(3)°. ...

متن کامل

Ultrasound-Promoted Synthesis and Characterization of Nanoparticles of Coordination Polymer [Co2(pydc)2(H2O)6]n.2nH2O

Nanoparticles of coordination polymer [Co2(pydc)2(H2O)6]n.2n H2O [H2pydc = pyridine-2,5-dicarboxylic acid] have been synthesized by sonochemical method and characterized by elemental analysis, infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, DLS particle size analysis and TGA/DTA. The structure of single crystalline coordination polymer developed from nanosized coo...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 19  شماره 

صفحات  -

تاریخ انتشار 2010